Муниципальное
образовательное учреждение
«Солдыбаевская
средняя общеобразовательная школа»
Программа
элективного курса:
«Избранные
вопросы математики».
Учитель математики
Перцева Нина Аркадьевна
Предпрофильная
подготовка учащихся.
Курс по выбору
для 9-го класса
«Избранные
вопросы математики».
I.
Пояснительная записка.
Курс «избранные
вопросы математики» предназначен для учащихся, выбравших для себя те
области деятельности, в которых математика играет роль аппарата для
изучения закономерностей окружающего мира. Каждое занятие данного курса
вызывает интерес учащихся к предмету, способствуют развитию
математического кругозора, творческих способностей учащихся, привитию
навыков самостоятельной работы и тем самым повышению качества
математической подготовки учащихся.
Особенности курса
заключаются в том, что он дает учащимся исторические сведения по истории
математики, решение задач повышенной трудности, решение задач
занимательного характера и задач на смекалку. Цель курса заключается в
том, чтобы ознакомить учащихся с задачами, предлагавшимися на приемных
экзаменах в ВУЗы, конкурсными задачами, что поможет учащимся составить
конкретное представление о требованиях по математике при поступлении в
ВУЗ. Задачами являются: познакомить учащихся с основными трудностями при
решении линейных уравнений и неравенств, квадратных уравнений с
параметрами, которые предлагаются в тестовых заданиях, выработать у них
навыки решения задач с параметрами.
II.
Учебно-тематическое планирование.
1.
Различные системы счисления – 2 часа.
2.
Линейная функция и ее график – 2 часа.
3.
График квадратной функции – 2 часа.
4.
Графическое решение систем уравнений и квадратных уравнений – 2
часа.
5.
Франсуа Виет и Рене Декарт – 2 часа.
6.
Формула расстояния между двумя точками – 2 часа.
7.
Модуль числа – 2 часа.
8.
Графики функций, содержащих выражения под знаком модуля – 2 часа.
9.
Графики квадратных функций, содержащих знаки модуля – 2 часа.
10.
С.В.Ковалевская. Эмми Нетер. Советские женщины математики – 1 час.
11.
Линейные уравнения с параметрами – 2 часа.
12.
Линейные неравенства с параметрами – 3 часа.
13.
Простейшие рациональные уравнения и неравенства – 3 часа.
14.
Квадратные уравнения с параметрами – 3 часа.
15.
Использование теоремы Виета при решении задач, связанных с
квадратными уравнениями, содержащими параметры – 3 часа.
Итого:
33 часа.
III.
Содержание
1.
Различные системы счисления. Что такое система счисления,
позиционная десятичная система счисления. Уметь переводить число из
десятичной системы счисления в другую. Решение примеров:
1)
Запишите числа в указанной системе счислений:
а) 778 = х;
б) 594 = х
2)
Выполните действия:
а) 2132 + 3201;
б) 231342 – 42123
2.
Линейная функция и ее график. Какая функция называется линейной,
использование в практической деятельности, графики.
Учащиеся должны
уметь строить график функции, решать графическую систему уравнений.
3.
График квадратичной функции, что является квадратичной
функцией. Учащиеся должны уметь строить график квадратичной функции,
выделить полный квадрат по графику, определить наибольшее или наименьшее
значение функций, строить графики функций, решать конкурсные задачи.
4.
Графическое решение систем уравнений и квадратичных уравнений,
решение конкурсных задач.
5.
Жизнь и деятельность великих математиков Франсуа Виет и Рене
Декарт. Их заслуженные труды.
Учащиеся должны
уметь решать задания типа: Найти корни уравнения, используя зависимость
между корнями и коэффициентами квадратного уравнения. Не решая
уравнения, определить знаки корней, составить квадратное уравнение,
имеющее корни.
6.
Формула расстояния между двумя точками. Вывод, использование.
Задачи и упражнения: вывести уравнение окружности радиуса
R
с центром в точке M
(а, б). Уравнение Эллипса, как
множество точек, сумма расстояний каждой из которых до двух точек,
называемых фокусами, равна 2а. Графическое решение систем уравнений.
7.
Модуль числа. Определение. Обозначение, геометрический смысл.
Решение уравнений, содержащих несколько выражений со знаком модуля.
Выработать умения и навыки решения уравнений, содержащих модуль.
8.
Графики функций, содержащих выражение под знаком модуля.
Построение графика. Решение задач на построение графика функций. Решение
конкурсных задач, заданий на смекалку.
9.
Графики квадратичных функций, содержащих знаки модуля. Решение
задач и уравнений на построение графика. Функции заданий на смекалку,
конкурсных задач.
10.
О женщинах математиках. Гипатия. С.В.Ковалевская, Эмми Нетер и
советские женщины-математики, их труды, исследования. Решение примеров
уравнений, содержащих параметры.
11.
Линейные уравнения с параметрами. Определение, решение
уравнений, исследование. Решение примеров уравнений, содержащих
параметры.
12.
Линейные неравенства. Определение, исследование. Схема решений.
Примеры решения линейных неравенств, содержащих параметры.
13.
Простейшие рациональные уравнения и неравенства. Решение
упражнений и задач.
14.
Квадратные уравнения с параметрами. Определение, схема
исследования, решение примеров и упражнений.
15.
Использование теоремы Виета при решении задач, связанных с
квадратными уравнениями, содержащими параметры. Теорема Виета, а также
теоремы 1, 2, 3 о действительных корнях квадратного трехчлена.
Х1 и х2 – оба
отрицательные; оба положительные.
IV.
Занятия (лекционно-практические).
Спаренные часы:
1 час – лекционные
1 час - практические
Использованная
литература:
1.
И.С.Петраков «Математические кружки в 8-10 классах».
2.
В.В. Мочалов, В.В. Сильвестров «Уравнения и неравенства с
параметрами». ЧГУ.
Учитель
математики: Перцева Н.А.