80 Series - Modular timers 6-8-16 A

Contact specifications
Contact configuration
Rated current/Maximum peak current A
Rated voltage/Maximum switching voltage VAC
Rated load in $\mathrm{ACl} \quad$ VA

Rated load in AC15 $(230 \mathrm{~V} \mathrm{AC})$	VA
Single phase motor rating (230 V AC$)$	kW

Breaking capacity in $\mathrm{DCl}: \quad 30 / 110 / 220 \mathrm{~V} \mathrm{~A}$
Minimum switching load $\quad \mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material
Supply specifications

Nominal voltage	V AC $(50 / 60 \mathrm{~Hz})$
	VDC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC

Technical data

Specified time range

Repeatability	$\%$
Recovery time	ms
Minimum control impulse	ms
Setting accuracy-full range	$\%$
Electrical life at rated load in ACl	cycles
Ambient temperature range	${ }^{\circ} \mathrm{C}$

Protection category	IP 20

Approvals: (according to type)
80.11

| 80.01 | | 80.11 |
| :--- | :--- | :--- | :--- |

*Type 80.41:
(0.1 ...2)s, (1...20)s, (0.1 ...2)min, (1...20)min, (0.1 ...2)h, (1...20)h
**Type 80.61:
$(0.1 \ldots 1) \mathrm{s},(0.5 \ldots 5) \mathrm{s}$, (2...20)s, (0.2 ...2)min

*Type 80.82:
(0.1...2)s, (1...20)s,
(0.1 ...2) min, (1...20)min
**Type 80.91:
(0.1...2)s, (1...20)s,
(0.1...2)min, (1...20)min,
(0.1...2)h, (1...20)h

ORDERING INFORMATION
Example: a 80 series, modular timers, 1 CO (SPDT), 16 A, supply rated at (12...240)V AC/DC.

```
Series
Type
\(0=\) Multi-function (AI, DI, SW, BE, CE, DE)
\(1=\mathrm{ON}\) delay (AI)
\(2=\) ON pulse (DI)
4 = Signal OFF delay (BE)
\(6=\) True OFF delay (BI)
8 = Star-Delta (SD)
9 = Asymmetrical recycler ON starting (LI, LE)
```


No. of poles

```
\(1=1 \mathrm{CO}\) (SPDT)
\(2=2\) NO (DPST-NO), only 80.82 type
```


ACCESSORIES

Sheet of marker tags (24 tags) for types $80.01 / 11 / 21 / 41 / 61 / 82,9 \times 17 \mathrm{~mm}$	020.24

TECHNICAL DATA

EMC SPECIFICATIONS

TYPE OF TEST	REFERENCE STANDARD	
Electrostatic discharge - contact discharge	EN 61000-4-2	4 kV
- air discharge	EN 61000-4-2	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals	EN 61000-4-4	4 kV
Surges ($1.2 / 50 \mu \mathrm{~s}$) on Supply terminals - common mode	EN 61000-4-5	4 kV
- differential mode	EN 61000-4-5	4 kV
on start terminal (B1) - common mode	EN 61000-4-5	4 kV
- differential mode	EN 61000-4-5	4 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals	EN 61000-4-6	10 V
Radiated and conducted emission	EN 55022	class B

INSULATION

Dielectric strength		80.01/11/21/41/82/91	80.61
- between input and output circuit	$V A C$	4,000	2,500
- between open contacts	V AC	1,000	1,000
Insulation (1.2/50 $\mu \mathrm{s}$) between input and output	kV	6	4

OTHER DATA

Current absorption on signal control (B1)			$<1 \mathrm{~mA}$	
Power lost to the environment				
	without contact current	W	1.4	
	with rated current	W	3.2	
Max wire size			solid cable	stranded cable
		mm^{2}	$1 \times 6 / 2 \times 4$	$1 \times 4 / 2 \times 2.5$
		AWG	$1 \times 10 / 2 \times 12$	$1 \times 12 / 2 \times 14$
(7) Screw torque		Nm	0.8	

FUNCTIONS

$\mathbf{U}=$ Supply voltage $\mathbf{S}=$ Signal switch - = Output contact	LED*	Supply voltage	NO output contact	Contacts	
				Open	Closed
		OFF	Open	15-18	15-16
	- \quad -	ON	Open	15-18	15-16
		ON	Open (Timing in Progress)	15-18	15-16
		ON	Closed	15-16	15-18

* The LED on type 80.61 is illuminated only when the supply voltage is applied to the timer; during the timing period the LED is not illuminated.

Without signal Start = Start via contact in supply line (A1).
With signal Start = Start via contact into control terminal (B1).

With signal START

(SW) Symmetrical recycler: ON start.
Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).

(BE) Signal OFF delay.
Power is permenently applied to the timer.
The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

(CE) Signal ON and OFF delay.
Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiages the same preset delay, affer which time the output contacts reset.

(DE) Signal ON pulse.

Power is permenently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

NOTE: time scales and functions must be set before energising the timer.

* - With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).
- A voltage other than the supply voltage can be applied to the command Start (B 1), example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{VAC}$
$\mathrm{B} 1-\mathrm{A} 2=12 \mathrm{VDC}$

FUNCTIONS

NOTE: time scales and functions must be set before energising the timer.

* - With DC supply, positive polarity has to be connected to B1 terminal (according to EN 60204-1).
- A voltage other than the supply voltage can be applied to the command Start (B1), example:
$\mathrm{A} 1-\mathrm{A} 2=230 \mathrm{~V} A C$
$B 1-A 2=12 V D C$

