Саморегулируемая организация Некоммерческое Партнерство «МЕЖРЕГИОНАЛЬНЫЙ АЛЬЯНС ЭНЕРГОАУ ДИТОРОВ» (СРО-Э-150)
(полное наименование СРО, членом которой является энергоаудитор, в соответствии со сведениями, содержащимися в государственном реестре саморегулируемых организаций в области энергетических обследований

Общество с ограниченной ответственностью «Региональный Центр Энергосбережения»

ПРОГРАММА ЭНЕРГОСБЕРЕЖЕНИЯ И ПОВЫШЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ на 2020-2024 гг.

Администрация Алдиаровского сельского поселения Янтиковского района Чувашской Республики
(полное наименование объекта)

(должность, фамилия, имя, отчество (при наличии), подпись заказчика и печать юридического лина либо индивидуального предпринимателя, являюыегося заказчиком Программы)

ПАСПОРТ
 ПРОГРАММЫ ЭНЕРГОСБЕРЕЖЕНИЯ И ПОВЫШЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ
 Администрация Алдиаровского сельского поселения Янтиковского района Чувашской Республики
 (наименование Учреждения)

Полное наименование организации	Администрация Алдиаровского сельского поселения Янтиковского района Чувашской Республики
Основание для разработки программы	Закон Российской Федерации от 23.11.2009 года № 261-ФЗ «Об энергосбережении и повышении энергоэффективности» (ред. от 03.07.2016). Приказ Минэнерго России от 30.06.2014 №398 «Об утверждении требований к форме программ в области энергосбережения и повышения энергетической эффективности организаций с участием государства и муниципального образования, организаций, осуществляющих регулируемые виды деятельности, и отчетности о ходе их реализации» (Зарегистрировано в Минюсте России 04.08.2014 №33449).
Полное наименование исполнителей и (или) соисполнителей программы	Администрация 'Алдиаровского сельского поселения Янтиковского района Чувашской Республики.
Полное наименование разработчиков программы	1. Администрация Алдиаровского сельского поселения Янтиковского района Чувашской Республики; 2. ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «РЕГИОНАЛЬНЫЙ ЦЕНТР ЭНЕРГОСБЕРЕЖЕНИЯ»
Цели программы	1. Достижение целевых показателей энергосбережения и повышения энергетической эффективности, установленных Федеральным законом Российской Федерации от 23 ноября 2009 г. № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» (ред. от 03.07 .2016) и другими правовыми документами. 2. Повышение эффективности использования топливноэнергетических ресурсов.
Задачи программы	- реализация организационных мероприятий по энергосбережению и повышению энергетической эффективности; - внедрение новых энергосберегающих технологий, оборудования в Учреждении; - сокращение расходов на энергообеспечение;

	- снижение объёмов потребляемых энергетических ресурсов; - повышение уровня рационального использования ТЭР (топливноэнергетических ресурсов) за счёт внедрения энергосберегающих мероприятий.
Целевые показатели программы	- Целевые индикаторы в области эшергосбережения и повышения энергетической эффективности, отражающие экономию по отдельным видам энергетических ресурсов; - Целевые показатели в области энергосберсжения и повышения энергетической эффективности, отражающие экономию по отдельным видам энергетических ресурсов; - Целевые показатели, характсризующие удельные расходы энергетических ресурсов.
Сроки реализации программы	2020-2024 rr.
Источники и объемы финансового обеспечения реализации программы	Всего на реализацию мероприятий программы необходимо предусмотреть на период 2020-2024 годы 35,00 тыс. руб. Источники финансирования: - бюджетные и внебюджетные средства - 35,00 тыс. руб.
Планируемые результаты реализации программы	$\|$В результате реализации программы в период с $2020-2024$ годы возможно обестечить: - Экономию эл. энергии $\underline{9,6 ~ т ы с . ~ к В т \cdot ч ~}$ в патуральном выражении - Экономию эл. энергии $\underline{61,43 \text { тыс. руб. }}$

Введение

Энергосбережение является актуальным и необходимым условием нормального функционирования Учреждения, так как повышение эффективности использования топливно-энергетических ресурсов при непрерывном росте цен на энергоресурсы и соответственно росте стоимости электрической и тепловой энергии позволяет добиться существенной экономии как ТЭР, так и финансовых ресурсов.

Программа энергосбережения должна обеспечить снижение потребления энергоресурсов за счет внедрения в учреждение предлагаемых данной программой решений и мероприятий и соответственно перехода на экономичное и рациональное расходование ТЭР (топливо-энергетические ресурсы) при полном удовлетворении потребностей в количестве и качестве ТЭР, превратить энергосбережение в один из решающих факторов функционирования.

```
*
```


1. Общие сведения об учреждении

№	Наименование и адрес объекта	Этаж ност b	Год постройки	$\begin{gathered} \text { Общая } \\ \text { площадь, } \\ \text { м }^{2} \end{gathered}$	Отапливаем ая площадь здания, m^{2}	Отаплив аемый объем, M^{3}	Ограждающие конструкции		
							Стены	Окна	Крыша
1	Администрация Алдиаровского сельского поселения Янтиковского района Чувашской Республики, Янтиковский район, село Алдиарово, пер. Набережный, д. 13	1	1973	178,59	164,29	526,00	Кирпич ные	Пластиковые (1) Деревянные (8)	Двуска тная металл ическая

2.Сведения о потреблении энергетических ресурсов

Наименование энергоносителя	Единица измерения	$\mathbf{2 0 1 7}$ г.	$\mathbf{2 0 1 8}$ г.	$\mathbf{2 0 1 9}$ г.
Электрическая энергия	тыс. кВт•ч	33,30	31,80	20,80
	тыс. руб.	194,81	187,62	126,89

3. Цель Программы

Основной целью является повышение эффективного и рационального использования топливно-энергетических ресурсов, соответственно снижение расхода бюджетных средств на ТЭР.

4. Задачами Программы являются:

Снижение затрэт к 2024 году на ТЭР за счет сбережения энергоресурсов до 27%. Минимизация расходов местного бюджета по оплате за потребляемые энергоресурсы за счет учета и контроля над фактическим потреблением.

Формирование сознательного отношения у работников к сбережению и экономии энергоресурсов в масштабах Учреждения.

5. Основные принципы Программы

Программа базируется на следующих основных принципах:

- регулирование, надзор и управление энергосбережением;
- обязательность учета топливно-энергетических ресурсов;
- экономическая целесообразность энергосбережения.

6. Управление энергосбережением в Учреждении

Администрация Учреждения совместно с бухгалтерией определяет стратегию энергосбережения. Обеспечивает контроль за реализацией организационных и технических проектов. Первоочередными мероприятиями управления энергосбережением являются:

- организация контроля за использованием топливно-энергетических ресурсов;
- составление топливно-энергетических мониторингов.

7. Финансовые механ́измы реализации Программы

При реализации Программы финансирование проектов и мероприятий по повышению эффективности использования топливно-энергетических ресурсов осуществляется за счет средств Республиканского бюджета.

8. Технические направления организованных проектов

Приоритетными техническими направлениями энергосбережения являются:

Организаұионные мероприятия:

- проведение совещаний о ходе реализации программных мероприятий по энергосбережению (1 раз в квартал);
- постоянное осуществление контроля над закупками оборудования для нужд учреждения на соответствие требованиям энергетической эффективности;
- осуществление еженедельной проверки работы приборов учета и состояния водопроводной и отопительной систем, своевременное принятие мер по устранению неполадок;
: - своевременное проведение обследований и ремонт приборов учета и регулирования, др. оборудования;
- своевременная передача данных показаний приборов учета;
- осуществление ежедневного контроля за работой электрического освещения, водоснабжения;
- создание и контроль графика включения и выключения системы освещения, в

зависимости от уровня естественной освещенности. Применение такого графика позволяет сэкономить до 0,9 \% потребления электроэнергии;

- проведение анализа потребления энергоресурсов и проведение своевременной сверки по данным журнала учёта расхода энергоресурсов и счетам поставщиков;
- контроль за чистотой осветительного оборудования. Загрязнение, в т.ч. пыль, снижает эффективность освещения на 10-30 \%. Реализация данного мероприятия экономит 2% потребления электроэнергии.

1. Упорядочение использования осветительньх установок и использование искусственного освещения.

- Оптимизировать время и объем потребления осветительных установок;
- Значительная экономия электроэнергии, расходуемой на освещение, может быть получена за счет максимального использования естественного освещения в сочетании с автоматическим управлением искусственным освещением. Повышение эффективности использования осветительных установок может быть достигнуто при условии организации правильной их эксплуатации. Правильная эксплуатация осветительных установок предполагает чистку остекления окон и световых фонарей в производственных и общественных зданиях не реже двух раз в год, что позволит в среднем экономить до $5 \ldots 10$ \% электроэнергии. Для повышения коэффициента использования светового потока целесообразно окрашивать помещения производственных и общественных зданий в светлые тона, а также производить своевременную очистку ограждающих поверхностей от пыли и грязи.

Экономический эффект
Общий экономический эффект при реализации данных мероприятий может составить до 10%.

2. Проведение замеров сопротивления изолячии проводов и силовых линий.

Проведение замеров сопротивления изоляции проводов и силовых линий необходима для определения состояния электрического хозяйства объекта. Это и измерение сопротивления изоляции, испытание кабельных линий повышенным напряжением, проверка срабатывания автоматов защиты, измерение сопротивления токам растекания заземляющих устройств, измерение сопротивления переходных контактов цепи фаза-ноль, определение токов короткого замыкания, испытание изоляции сварочных трансформаторов и т.д.

Если рассматривать все вышеперечисленные работы глобально, не вникая глубоко в технические нюансы, можно сказать следующее:

- измерение сопротивления изоляции электропроводки производиться для контроля изоляции. Если сопротивление изоляции будет ниже нормы (согласно нормативных документов) - вероятность возникновения короткого замыкания именно в проводке очень велика (т.е. короткое замыкание не в

электрооборудовании-приемнике, а именно в проводке, что в большинстве случаев намного усложняет работы по поиску и устранению неисправностей);

- измерение сопротивления токам растекания заземляющих устройств, сопротивления переходных контактов магистральных линий заземления - данные работы производятся прежде всего для обеспечения личной безопасности, защиты работающего персонала от поражения электрическим током. Ведь если сопротивление контура заземления будет больше нормативного или «третий» («пятый» провод вообще будет отсутствовать - малейший пробой на корпус электрооборудования приведет к электротравме работающего персонала со всеми последствиями;
- проверка срабатывания автоматов защиты, определения токов короткого замыкания, полного сопротивления петли «фаза-ноль» - данное измерение проверяет автомат защиты, вернее, соответствие его номинала минимальным токам короткого замыкания проверяемой линии. Если не вникать глубоко в теорию можно сказать, что все материал, из которого делается изоляция кабелей и проводов - имеет определенную изоляцию, которая со временем под воздействием определенных факторов (воздух, вода, нагрев, старение) теряет свое сопротивление.

К примеру, в начале эксплуатации сопротивление изоляции линии было 100 МОм, а через 20 лет стало уже 5 MOM , в итоге, если в начале эксплуатации линию можно было защицать автоматическим выключателем автоматом 40А (в зависимости от сечения, материала токопроводящей жилы), то через 20 лет такой автоматический выключатель просто не сработает при коротком замыкании, ток короткого замыкания будет ниже порога срабатывания автоматического выключателя и впоследствии этого произойдет как минимум короткое замыкание с перегоранием токопроводящей жилы, а в бол̣ьшинстве случаев - пожары.

3. Установка датчика движения.

Датчик движения - это прибор со встроенным сенсором, который отслеживает уровень ИК излучения. При появлении человека (или другого массивного объекта с температурой большей, чем температура фона) в поле зрения датчика цепь освещения замыкается при условии соответствия уровня освещѐнности.

Главное преимущество датчиков движения для монтажников - это простая установка и их настройка для последующей работы: не требуется прокладка специальных сетей управления или применение дополнительного дорогостоящего оборудования. Датчики устанавливаются в разрыв электрической цепи и сразу готовы к эксплуатации.

Главная цель данного оборудования - обеспечить пользователю комфорт и экономию энергии.

Несмотря на почти трехкратное различие в стоимости энергии, сроки окупаемости установки датчиков движения для России составляют 1-2 года, в зависимости от темпов роста цен на электроэнергию и мощности применяемого

осветительного оборудования. Учитывая общий срок эксплуатации зданий, срок окупаемости данного оборудования мал, а применение данного решения позволяет учреждению сэкономить значительные средства при эксплуатации объекта.

датчик движения
4. Установка теплоотражаюших экранов между радиаторами (приборами отопления) и стеной.

Мероприятие предназначено для сокращения бесполезных потерь тепла отопительными приборами, установленными у наружных ограждений. При отсутствии теплоотражающего экрана возможный перерасход тепловой энергии может составлять порядка $5 \div 7 \%$ от всей тепллоотдачи прибора.

Теплоотражающий экран за радиатором отопления полностью изолирует стены от нагрева, тем самым, понижая потери тепла. Установив теплоотражающий экран за радиатор отопления, можно повысить температуру внутри помещения, как минимум, на $1 \div 2^{\circ} \mathrm{C}$.

5. Промывка трубопроводов системы отопления. Снижение тепловых и гидравлических потерь за счѐт удаления внутренних отложений с поверхностей радиаторов и разводяиих трубопроводов.

Отложения в трубоироводах и на внутренних поверхностях теплообменных аппаратов является следствием физико-химического процесса. На интенсивность этого процесса влияют несколько факторов: химический состав воды, скорость движения воды, характер внутренней поверхности, температурные условия.

Отложения способны вносить коррективы в установленный гидравлический и тепловой режимы доставки теплоносителя до конечного потребителя, поэтому своевременное их удаление с использованием современных технологий является мерой, позволяющей устранить сбои в теплоснабжении, а так же снизить затраты электрической энергии на прокачку теплоносителя. В том случае если отложения сформировались на внутренней поверхности радиаторов, они выступают в роли дополнительного сопротивления теплопередаче.

Как правило, промывка трубопроводов отопления требуется любой системе отопления, отработавшей без промывки более 5-10 лет.

Практика показывает, что за это время эффективность системы отопления существенно снижается; большая часть диаметра трубы системы отопления забита отложениями, которые не только увеличивают потребление газа и электроэнергии, но и могут привести к различным авариям системы отопления.

Существует несколько основных технологий промывки отопления; каждая из них имеет свои недостатки и преимущества.

Химическая промывка трубопроводов

Наиболее распространенным вариантом промывки трубопроводов является химическая безразборная промывка отопления, которая позволяет сравнительно легко перевести в растворенное состояние подавляющую часть накипи и отложений и в таком виде вымыть их из системы отопления. В наши дни для промывки системы отопления используются кислые и щелочные растворы различных реагентов.

Среди них - композиционные органические и неорганические кислоты, например, составы на основе ортофосфорной кислоты, растворы едкого натра с различными присадками и другие составы. Точные составы составов для промывки отопления держатся производителями в секрете.

Химическая промывка труб отопления - сравнительно дешевый и надежный метод, позволяющий избавить систему отопления от накипи и загрязнения, однако обладающий определенными недостатками. Среди них - невозможность химической промьівки алюминиевых труб, токсичность промывочных растворов, проблема утилизации больших количеств кислотного или щелочного промывочного раствора.

Технически химическая промывка отопления проводится следующим образом: после того, как подобран соответствующий данной системе отопления химический

реагент для промывки отопления и выбран ингибитор коррозии труб, на место проведения работ выезжает группа технических специалистов.

На месте работ используется специальная емкость с насосом, подключаемая к системе отопления. После того, как все необходимые химикалии введены в систему отопления моющий раствор циркулирует в системе отопления в течение времени, которое рассчитывается индивидуально в зависимости от степени загрязненности системы отопления. Химическая промывка отопления может происходить и в зимний период, без остановки системы отопления. Химическая промывка отопления дешевле капитального ремонта системы отопления в 10-15 раз, продлевает срок нормальной работы отопления на 10-15 лет, снижает расходы электроэнергии на $20 \%-60 \%$.

Гидродинамический метод промывки трубопроводов отопления

Гидродинамическая промывка труб отопления состоит в удалении накипи путем очистки системы отопления тонкими струями воды, подаваемыми в трубы через специальные насадки под высоким давлением.

Гидродинамическая промывка труб по стоимости более чем в 2 раза дешевле замены оборудования, причем позволяет добиться впечатляющих результатов по восстановлению энергоэффективности системы. Особенно это касается чугунных радиаторов отопления, которые методом гидродинамической промывки отопления полностью восстанавливают свою работоспособность. Аппараты для гидродинамической промывки работают в специальных лабораториях под давлением около двухсот атмосфер, полностью уничтожая любые виды отложений: соли кальция, магния, натрия, жиры, ржавчину, нагар, химикаты.

Пневмогидроимпульсная промывка труб

Метод пневмогидроимпульсной очистки позволяет проводить промывку труб путем многократных импульсов, выполняемых при помощи импульсного аппарата.

В данном случае кинетическая импульсная волна создает в воде, заполняющей систему отопления, кавитационные пузырьки из газопаровой смеси, возникающие вследствие прохождения через жидкость акустической волны высокой интенсивности во время полупериода разрежения. Двигаясь с током воды в область с повышенным давлением или во время полупериода сжатия, кавитационный пузырек захлопывается, излучая ири этом ударную волну.

Завихрения воды с воздухом отрывают отложения от стенок труб, а последующая волна воздушно-водяной смеси уносит накипь, которая поднялась со дна.

6.Модериизағия системьь освещения с применением светодиодных ламп.

Одной из причин для проведения мероприятия по энергосбережению в учреждении, является снижение издержек и повышение экономической эффективности. При этом электрическое освещение создает комфортные условия для труда, уровень освещенности значительно влияет на производительность.

Снизить затраты на электрическое освещение и повысить его качество можно путем проведения модернизации осветительного оборудования: заменой люминесцентных светильников и ламп накаливаний на светодиодные световые трубы без замены исправных корпусов осветительных приборов. Это позволит в сжатые сроки добиться снижения затрат на электроэнергию на нужды освещения в 2,5 раза, исключить затраты на утилизацию люминесцентных ламп и повысить качество системы освещения.

9. График внедрения рекомендуемых энергоресурсосберегающих мероприятий

$\begin{gathered} \text { №g } \\ \text { ח/ } / \text { II } \end{gathered}$	Энергоресурсосберегающие мероприятие	Рекомендуемая дата внедрения
1	Упорядочение использования осветительных установок и использование искусственного освещения	Апрель 2020 г. - Декабрь 2024 г.
2	Установка датчика движения	Август 2021 г.
3	Установка теплоотражающих экранов между радиаторами (приборами отопления) и стеной	Август 2022 г.
4	Промывка трубопроводов системы отопления. Снижение тепловых и гидравлических потерь за счѐт удаления внутренних отложений с поверхностей радиаторов и разводящих труб́опроводов	Август 2020 г. - Август
5	Проведение замеров сопротивления изоляции проводов и силовых линий	Июнь 2020 г.
6	Модернизация системы освещения с применением светодиодных ламп	Июль 2021 г. Август 2022 г.

Сроки и этапы реализации Программы

Программа рассчитана на период 2020-2024 гг. В результате реализации программы предполагается достигнуть суммарной экономии ТЭР в целом к концу 2024 года в размере 27%.

10. Заключение

Программа энергосбережения Администрации Алдиаровского сельского поселения Янтиковского района Чувашской Республики обеспечивает переход на энергоэффективный путь развития - уменьшению затрат на ТЭР. Программа предусматривает:

- систему отслеживания потребления энергоресурсов и совершенствования топливно-энергетического баланса;
- организацию учета и контроля по рациональному использованию, нормированию и лимитированию энергоресурсов;
- разработку и реализацию энергосберегающих мероприятий.

Учет топливно-энергетических ресурсов, их экономия, нормирование и лимитирование, оптимизация топливно-энергетического баланса позволяет снизить бюджетные затраты на приобретение ТЭР.

ДОКУМЕНТЫ, ПОДТВЕРЖДАЮЩИЕ ПРАВОМОЧНОСТЬ РАБОТЫ

Свидетельство № СРО-Э-150 о членстве в саморегулируемой организации области энергетического обследования и предоставлении права к осуществлению работ в области энергетического обследования в соответствии с Федеральным законом №261 от 23.11.2009 г (с изм., внесенными в Федеральный закон).

СВИДЕТЕЛЬСТВО

№ 0168-2130203943-06092018-30150 выдано члену саморегулируемой организации

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "РЕГИОНАЛЬНЫЙ ЦЕНТР ЭНЕРГОСБЕРЕЖЕНИЯ"

ИНН 2130203943 OГPH 1182130009236 428003, ЧУВАШСКАЯ РЕСПУБЛИКА, ГОРОД ЧЕБОКСАРЫ, УЛИЦА ЯРОСЛАВСКАЯ, ДОМ 76, ОФИС 5

Выдано на основании Решения Правления Партнерства Протокол № 175-34П от 05 сентября 2018 г.

[^0]Сеидетепьство выдано
без ограничения срока действия и действительно на всей территории Российской Федерации Действие свидетепьства (допуска) может быть приостановлено

Сведения об актуальном статусе свидетельства (допуска) размещены в Реестре членов на сайте саморегулируемой организации по адресу www.sro150.ru

Директор СРО НП «МАЭ»

Удостоверение является документом установленного ооразча о повыиении квалификачии

еСтоличный Центр Професснональной Подготовки Кадров>

УДОСТОВЕРЕНИЕ

О ПОВЫШЕНИИ КВАЛИФИКАЦИИ

Настоящее удостоверение выдано
Рубцову
Роману Сергеевину

в том, что он(а) с «18» февраля 2019r. по «28* февраля 2019r прошех (a) обучение в (на) 000 "Столичный Центр
Профессиовальной Подготовки Кадров" \qquad max)

по программе: «Проведение энергетических обследований с целью повышепия энергетической Јффективности и энергосбережения предприятия. Составление энергетического наспорта. Энергоаудит»

в объеме

Город Москва
Год 2019
77СКІІ 0012924

СВЕДЕНИЯ
О ЦЕЛЕВЫХ ПОКАЗАТЕЛЯХ ПРОГРАММЫ ЭНЕРГОСБЕРЕЖЕНИЯ И ПОВЫШЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ

$\begin{gathered} \text { № } \\ \Pi / \Pi \end{gathered}$	Наименование показателя программы	Единица измерения	Плановые значения целевых показателей программы				
			2020 r.	2021 г.	2022 r .	2023 г.	$20 \underline{24}$
1	2	3	4	5	6	7	8
I. Целевые индикаторы в области энергосбережения и повышения энергетической эффективности, экономию по отдельным видам энергетических ресурсов							
1	Объемы потребления электроэнергии		20,80	19,76	19,55	19,13	19,13
2	Объемы потребления природного газа (на отопление и ГВС)	тыс. куб.м					
3	Объемы потребления твердого и жидкого печного топлива	тонн	-	-	-	-	-
4	Объемы потребления тепловой энергии (на отопление и ГВС)	Гкал	-	-	-	-	-
5	Объемы потребления воды	тыс. куб.м	-	-	. -	-	-
6	Объемы потребления моторного топлива	тыс. л	-	-	-	-	-
7	Количество приборов учета потребления электроэнергии	шIT.	2	2	2	2	2
8	Количество приборов учета потребления тепловой энергии	urr.	-	-	-	-	-
9	Количество приборов учета потребления природного газа	IIIT.	-	-	-	-	-
10	Количество приборов учета потребления горячей воды	шr.	-	-	-	-	-
11	Количество приборов учета потребления холодной воды	UT.	-	-	-	-	-
12	Количество посещаемых	чел.	1312	1312	1312	1312	1312
13	Количество сотрудников Учреждения	чел.	4	4	4	4	4
14	Общая площадь зданий учреждения	кв.м.	178,6	178,6	178,6	178,6	178,6
15	Отапливаемая площадь зданий учреждения	кв.м.	164,3	164,3	164,3	164,3	164,3

II. Целевые показагези в области энергосбережения и повынияия тнергетической фффективности

II. Целевые показатези в области энергосбережения и повыновия тнергетической әффективности							
1	Снижепие потреблсния этектроэнергии н натуральном выражснии	\%	-	5	6	8	8
2	Снижение потребления тепоонертин в натуратьном выражснии	\%	-	-	-	-	-
3	Снижение потрсблтения природного газа в натуральном выражснии	\%	-	-	-	-	-
4	Снижение потребления твердого и жидкого печного топлива в натуратьном выражснии	\%	-	-	-	-	-
5	Снижсние нютрсблния воды в натураньном выражении	\%	-	-	-	-	-
6	Снижение потреблсния моторного топлива в натуральном выражснии	\%	-	-	-	-	-
7	Оснащенность приборами учега (элекгроэнергия)	\%	100	100	100	100	100
8	Доля оснаценности приборами уथега (тешюоэнриия)	\%	-	-	-	-	-
9	До:яя оснаиенности приборами учета (природный газ)	\%	-	-	-	-	-
10	Догя оснаненности приборами учета (BC)	\%	-	:	-	-	-
11	Доля оснащенности приборами учета (XBC)	\%	-	-	-	-	-

III. Іелевые показатели, характеризуюшие улетьные расходы энергетических ресурсов

1	Удельный расход тешнвой энерсии на единипу отапциваемой ппоцади Учрежсения	тыс.кВтч/кв.м.	0,116	0,111	0,109	0,107	0.107
2	Удельнос потрсбление элктронергии на одного согрудника	тис.кßтч/чe.	5.200	4,940	4,888	4.783	4,783

OTYET

О ДОСТИЖЕНИИ ЗНАЧЕНИЙ ЦЕЛЕВЫХ ПОКАЗАТЕЛЕЙ ПРОГРАММЫ ЭНЕРГОСБЕРЕЖЕНИЯ И ПОВЫШЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ

Наименование организации
Администрация Алдиаровского сельского поселения
Янтиковского района Чувашской Республики

№ п/п	Наименование показателя программы	Единица измерения	Значения целевых показателей программы			
			план	-	факт	отклонение
1	2	3	4		5	6
1	Удельный расход тепловой энергии на единицу отапливаемой площади Учреждения	тыс.кВтч/кв.м.				
2	Удельное потребление электроэнергии на одного сотрудника	тыс.кВтч/чел.				

Руководитель
(уполномоченное лицо)

должность)
(должность)
(расшифровка подписи)
(расшифровка подписи)

Руководитель финансово-экономической службы (уполномоченное лицо)

ЕЖЕНИЯ И ПОВЫШЕНИЯ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ

[^0]: Настоящим свидетельством подтверждается право осуществлять деятельность по проведению энергетического обследования в соответствии с Федеральным законом РФ от 23 ноября 2009 года № 261-ФЗ

